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Optimization of Resonant Interband Tunnel Devices
Mark F Sweeny

Zytron Ltd

Abstract

We have cw-fied out analytical and numerical studies of resonant interband
tunnelling. The numerical methods implement a 2 band model, consisting of the
conduction band and a single valence band. The valence band can be considered
to be the "light" holes. The numerical methods are described in detail, and can be
applied to multiband models too. Analytic estimates are made of the thermionic
currents, the of effect of stress, and other physical effects not included in the
numerical models. The devices simulated are closely modeled after a set of
Resonant Interband Tunnel Diodes fabricated at the Varian Research Center in
Palo Alto California. Comparison of the measured and computed results show that
our simulator predicts the maximal currents to within a factor of two, for devices
with maximal currents varying by a factor of 1000. There are systematic
differences which are likely to be due to the very high doping used in the devices.
Finally, we describe a graphic user interface, implemented for our device
simulator, and a Mathematica package for carrying out symbolic computations
upon the operators of the Luttinger model and related multiband models of
semiconductors. The work described here was funded by a contract with the US
Air Force Office of Scientific Research
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expository section is simply to define the
notation. It is also hoped, however, that a
reader with a strong background in general

Introduction physics should be able to gain some
understanding of the subject.

In this report, we describe a project to carry
out numerical and analytic studies of RITD's, As a part of the research carried out under this
which was funded by a contract with the US contract, we implemented a tensor package to
Air Force Office of Scientific Research manipulate the algebraic objects arising in the

theory of the valence bands of the zincblend
Resonant Interband Tunnel Diodes (RIT's) semiconductors. The section describing this
were proposed independently by several work is the most mathematically demanding
researchers 1 , 2, 3. These devices are essentially part of the report. The material in that section,

tunnel diodes4. Which incorporate is, however not needed for any other parts of

heterostructures. Such devices have achieved the report, and so can be skipped if need be.

peak to valley current ratio's in excess of 100 RTD Device Physics
at room temperature 5 and current densities in
excess of 109A/m 2 have been observed6, At a simplified level, Resonant Interband
making these devices promising for use in Tunnel Diodes (RITD's) may be understood
high speed electronics. At this time the by reference to Figure 1. This figure
publications relating to RITD's, are so illustrates Interband tunnelling, thermionic
numerous that it is impossible to give a emission, and indirect conduction by means of
treatment to all authors. I would point out that scattering into intermediate bound states and
McGill et. al. probably have carried out the tunnelling across the small barrier. The case
most sophisticated device simulations, to Ic is used to illustrate the fact that in our
date7. Their work has focused upon the paradigm the conduction through a device
GaSb/InAs/A1Sb material system, while the with very wide wells is dependent upon
present study uses material parameters for scattering to populate bound states within the
InAlAs and InGaAs lattice matched to InP. In wells. This complex explanation contrasts
this report, we compare our numerical results with the physically intuitive concept that the
to the experimental results obtained for a set device in Ic is not a double-well device at all,
of devices made in this material system at the but a single barrier device, with contacts to
Varian Research Center, in Palo Alto high-band gap electrodes "located far from the
California 8 , 9. region of interest." Of course, computerized

device simulators are not very intelligent, and
While this was not, strictly speaking, a it is important to note that the thermionic
software project, the bulk of the time spent on emission current in a device such as that
the project actually consisted of software shown in Figure I is likely to be
development. Because of this, and because underestimated if "direct" currer.ts only are
the software developed has potential both for calculated.
future research and for development into
commercial products, documentation of the Of course, a numerical device simulation must
software is a major part of this report. solve the Poisson's equation self-consistently,

with the carrier density, but this problem will
The sections on the basic device physics and be treated later, as it does not involve any new
on the theory of interband tunnelling are physics that is special to RITD's.
meant to provide background. This material
has in its essential form been published, and is
too complex to be dealt with fairly in a report
of this length. Part of the function of such an

4
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Iis schematically illustrates tunnelling in
an RITD, showing Interband tunnelling,
thermionic emission, and indirect conduction
by means of scattering into intermediate
bound states. This project has primarily

ensity of States considered direct interband tunnelling. In
Sla, the device is biased with a small voltage,

rQuantum Well States and is highly conductive by means of
interband tunelling. In Figure l b, the

Interband Fermi Level forward bias is large enough to cause a
Tnelinde heavy thermionic emission current to flow.Tunnelling Fig I c illustrates the case of an R1TD with

two very wide quantum wells. In this case
the conduction by means of scattering is
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Theory of RITD Devices involves 4 by 4 spin 3/2 matrices, and this has
caused the field to suffer from algebraic

The theory of RTD devices is based upon the complexity ever since.
band structure indicated in Figure 2, which is
a generic structure typical of zincblend and
diamond semiconductors at the F point of the Energy
band. This band structure consists of a
conduction band and a set of valence bands. It Conduction Band
is interesting to put this into historical
perspective. Shockley t0 is (as far as this
author knows) the first to suggest that the
valence bands would be degenerate (because Momentum
they are transformed according to an
irreducible representation of the cubic group) Heavy Holes
at the r point. His statement, which is
essentially correct, was that the valence bands Light Holes

form a vector and that the wave equation is
analogous to sound in an elastic medium, with Split off Band
different velocities for longitudinal
(compressive) waves and for transverse Figure 2 Band Structure
(shear) waves. A few years later, when
Dresselhaus, Kip, and Kittel 11 (in an The Band Structure of a "typical" zincblend
exceptionally good paper) described and semiconductor at the r point. The conduction
interpreted cyclotron resonance experiments, b and split-off band are both two-fold
it became clear that Shockley's model degenerate, due to spin, while the light and
neglected the spin orbit splitting. Schockley heavy holes are fourfold degenerate at the the F
thought of the valence bands as a vector, with point. As k increases, the light and heavy holes
the spin 1/2 nature of the electron playing no split apart, as shown. It is important to realize
essential role. Kip, Kittel and Dresselhaus that the light and heavy holes are really different
found that the spin 1 degree of freedom polarizations of the same "particle," so that
inherent in the vector nature of the band mixes scattering, for example, will generally cause a
with the spin 1/2 electron spin via the spin mixing.
orbit interaction. While the spin orbit
interaction is normally considered "weak" in As if a complex valence band structure were
this case, the original bands are degenerate, Dot enough, Kane12, in explaining the band
and so the splitting between the "light and structure of Indium Antimonide, reasoned that
heavy" holes at the top of the band and the the conduction band was too close to the
split-off band below is significant. Cyclotron valence bands for any interactions to be
resonance experiments concern a situation of treated as small perturbations, and so arrived
very low temperature, and relatively low at the well-known Kane Hamiltonian, which
doping, where even the split-off band can be couples all eight bands at once. iae spherical
considered "far" from the band maximum. In cope alians an The shric
this case, one can write a separate Hamiltonian equation, but can be written
for just the spin 3/2 components, which has
come to be known as the Luttinger
Hamiltonian. Unfortunately, this Hamiltonian I

[0 _~V 2 ) + Vc(r)+ E, -PV
H = PV A, V2 + BVV.- 3a ". - V,(r) Lp [1]
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written very simply in terms of a vector dot
where 0 is a spin 1/2 envelope function product with a matrices operating upon the
representing the conduction band, and + is a spin 1/2 degrees of freedom
set of three spin 1/2 envelope functions, AA(L.A

where the -I on the left is to make the term be
is a tensor product between a vector and a zero for the spin 3/2 component, and -A for

spinor representation of SU(2), and is itself a the split-off spin 1/2 component. It must also
reducible representation, having a spin 3/2 be stated that the full Kane Hamiltonian (as
component, and a spin 1/2 component. The well as the Luttinger) contain "band warping"
spin 3/2 components become the light and terms. These are additional anisotropic
heavy holes, while the spin 1/2 components interactions, which break spherical (but not
become the split-off band. Note that the cubic) symmetry. While the band warping
second column contains vector dot products terms are responsible for much of the

w it and that while V and are generally complexity of the theory, they are alsowithors, a tor whil ha been eraed numerically small compared to the other terms
vectors, a vetor symbol has been usedprimarily
selectively to emphasize the vector whose important in the dispersion of the heavy holes.
index appears on the left side of the equation.
The tensor product approach, which is a In this work, we begin with a two-band model,
favorite of this author, makes the simplicity of loosely modeled after the Kane Hamiltonian,
Shockley's first model become apparent, but
(as can be verified with algebra) requires us to
note that the spin orbit interaction can be

p

HI E =LA  V) r)+E A, V2 -V(r)] I] [2]

the 8-band modeL We will return to this point
This Hamiltonian was used by Kane 13 in his in the following section.
own modelling of interband tunnelling in Band Structure and Tunnelling
homojunction tunnel diodes. The similarity to
equation 1 is less than it appears, as I' is no Physically, the dispersion relation or
longer a vector, and the spin orbit interaction momentum (k) verses energy (E) is the
is now being ignored. This Hamiltonian has primary characteristic of a band, and so it is
the obvious advantage of (relative) simplicity. instructive to consider the dispersion relations
As interband tunnelling requires at least two for the 8-band and 2-band models. The
bands, which must be coupled, this is the dispersion relation is equivalent to solving the
minimal Hamiltonian for the modelling of sersion eation is equiltonsolvinthe
such phenomena. While it is easy to accept secular equation for the Hamniltonian, with V
the proposition that the 2-band model accounts replaced by ik, the momentum of a plane
qualitatively for the physics of interband wave.
tunnelling, it takes further convincing to
believe that it should be quantitatively close to Determinant[H(k) - E I] = 0

7



In his famous paper on the band structure of It is worth noticing that the dispersion curves
InSb, Kane elucidated the band structure tend to be very close (numerically) to the
resulting from the 8-band Hamiltonian. To a following simple formula:
very good approximation, the heavy holes
form a doubly degenerate band, which does 2 (E - E)(E + E,)
not interact at all with the other bands. The 2m (E Es( ~remaining six bands are paired into 3 doubly 2m
degenerate bands. The double degeneracy of
all bands means that the secular equation, In fact this curve lies (numerically) between
which is an 8th-order polynomial in E, is the two shown in Figure 3. With this formula
actually a square of a quartic. The fact that the one can perform the WKB integral exactly to
heavy holes do not interact with the other estimate tunnelling through the forbidden
bands means that heavy hole solution can be region in the case of a traditional tunnel diode:
separated out, and we are left with a cubic for
E:2log(T) -L~dEIn(k)= r L h2-.

E'(E'-EG)(E'+A) -k 2P2I E+- 1)= 0 E .8

-3' ' where L is the length, of the forbidden region,
and the potential is assumed to vary linearly

E'= E - A k2  from Ev to Ec as one traverses the forbidden
where 2m. , the energy minus the region.
bare electron energy. Looking again at Figure 3, the points where

The three solutions for E represent the the curve intersects the energy axis are fixed
conduction band, the light holes, and the split- by the band gap, and the slopes at those points
off band. An illustration of this band structure are fixed by the physical masses. This heavily
was shown earlier as Figure 2. constrains the shape of the curve, with the

result that the overall depends very weakly
In deriving this equation, Kane assumed that upon the matrix element P, provided of course
the diagonal entries in H were of the bare- that P is not 0 and that the physical masses are
electron form, but when one allows for held constant by the adjustment of the other
arbitrary values, a cubic still results, although parameters. P is one of the least reliably
it is more complex. It is this more complex known band parameters, but because the
cubic which has been used at ZYTRON, and tunnel rates do not vary strongly with P we
forms the basis for the numerical results that can still expect to reliably "simulate" devices.
make up the remainder of this section.

Figure 3 shows the computed band structures
resulting from these equations. Numerically,
they are very close, and one would not expect
that there would be a big difference in
tunneling rates due to choice of band model.
For InAIAs, the barrier is slightly deeper for
the case of the 2-band model, and so the
overall tunnel rate would be expected to be
less. Because tunnel current is exponential in
the barrier height, the difference is

" " I2 1 2 ) , where T8 is for the 8-band

tunnel coefficient, and T2 is for the 2-band
model.

8
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Figure 3

This compares the 2-band dispersion and the spherical Kane (8-band) dispersion using
band structure parameters appropriate for InAlAs. This plot shows k2 as a function of
Energy by showing k2 , not just k, we can include both the allowed regions where k2 > 0
and the "forbidden" region, k2 < 0. Tunnelling will occur in the forbidden region. The
tangent at k2 = 0 is a line: , and similarly for the valence band. Because the 8-band model
includes the split-off band, which "repels" the light hole band, there is a large non-
parabolicity, and this is evident in the divergence of the two curves for negative E. For

gap, the actual values are:
positive E, including the forbidden gap, the agreement is very good at the middle of the

k2 = -0.762, for the 8 band case, and
k2 = -0.8419, for the 2 band case.
Figure b shows the similar structure for InGaAs.
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Figure 4a Figure 4b

This shows the dispersion in the 11 I direction of light and heavy holes in GaAs.
Figure 4a illustrates the case with no stress, and 4b shows the case in which a large
stress in the 100 direction has split the bands by a total of roughly 200 meV. While
this may be unrealistically large splitting, the qualitative effect remains the same
for smaller svlittings. This splitting would be typical of a distortion of several
percent. This calculation used the Luttinger Hamiltonian, with stress terms, as
discussed in the text.

Figure 4
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The Full Kane Hamiltonian

Earlier, we wrote the spherically symmetric ([pi3i1v) = yT, _ V[
Kane Hamiltonian, and alluded to the fact that
the full Hamiltonian contains band warping to indicate the action of the band-warping
terms too. Before presenting a more complete term in the Hamiltonian, where y is a constant
Hamiltonian, we will motivate it's form, which defines the strength of the interaction.

Group Theory, and the Structure of S tpa
Hamiltonians When the electron spin operator 2z is

used, we can create several spinorbitwarping
The importance of symmetry to the theory of terms, but these are generally believed to be
band structures dates was given explicit form too small to be physically observable, and are
in the paper of Bouckaert, Smoluchowski, and rarely included in a Hamiltonian, so
Wigner 14 . For our purposes, we need to equation 3 is generally used as the sole
construct the Hamiltonian from objects which anisotropic term.
are invariant under the cubic group. As the The Luttinger Hamiltonian is the most general
cubic group is a subgroup of the rotation Hamiltoian allowed by group theory for the
group, any rotationally invariant Hamiltonian caselo alowed by ransfory as a
will be invariant. There is a special rank-4 case of a set of four bands transforming as atenor wic Ideot 14,which is also spin 3/2 representation. This is a limiting case
tensor, which I denote T4, wof the Kane 8-band Hamiltonian, with bandinvariant under the cubic group: warping, in the case where the momenta are

Td =XX b d +~ b d =~ b dall very small, so that the split-off band aL:d
where the conduction band can be considered to be

xa is a unit vector in the x direction, etc. It is very far from the light and heavy holes. That
sometimes preferred to use the trace-free part limit is very appropriate for cyclotron
of T4 , which is transformed as part of the resonance, where band parameters are often
irreducible representation of the rotation measured, and it is not far from the case of
group, but is slightly more complex. thermal carriers at room temperature, where

the density of states must be determined. This
We can now add another term to the is the most frequent starting point for the study
Hamiltonian equation 1, which acts upon the of multiband systems, and virtually all

valence band "vector" components +/. We tabulated band parameters are given as

can write Luttinger parameters, y', y2 y3. Using ik = V.
The Luttinger parameters are implicitly
defined by the Luttinger Hamiltonian 15.

HtL = y"[( +2 r 2) k'- r 3(k.J)2 +(3 - y2)T*a"dJJbkk d

where ja is the spin 3/2 angular momentum In the presence of stress, additional terms
operator. ja form a set of 3 four-by-four arise:
matrices. Unfortunately, some of the
"simplicity" gained in the "elimination" of the H= HL + D1Ea + D2JaJbeal + D3 jaJ bedT d

split-off band is paid for in the form of these J HL = Luttinger Hamiltonian l S"

11



current can (fairly accurately) be analytically
estimated, and it is generally very small in the
"valley" of low conduction. At the level of

The D's are deformation potentials. DI sophistication afforded by the present project,
describes a term which shifts the overall band we have not attempted to calculate "indirect"
energy in response to isotropic pressure. This currents, that is, currents that result from
does not lead to large changes in the tunnel scattering into a bound state, and later from a
rates, and so will be ignored. D2 is isotropic, tunnelling process through the barrier. We
in the sense that the relationship between band remind the reader that, as pointed out in
splitting and direction of stress is not Figure Ic, this indirect current can be the
dependent upon orientation. D3 is similar to dominant current in a device.
D2, but the effect depends (through T4 ) upon
the orientation of the stress relative to the
crystal axis. D2 is expected to be larger than Simulation Overview
D3, and since the actual parameters are not
always well-known, we have assumed in the It is usual to think of a device simulator asnumerical work described later in thisrericthat tk eied tessre is beginning with a set of equations (usually thereport.that the entire stress effect is due to D2. drift diffusion equations and Poisson's

equation), and then proceeding with a
numerical solution. This works well in cases

Effect of Stress where there is agreement upon the device
physics, but has caused frustration among

Stress has a significant effect upon the band device physicists who find that they are unable
structure of the zincblend semiconductors. At to embed new concepts or new physics into
a qualitative level, the degeneracy of the the context of a realistic device structure. I
valence bands is lifted. Figure 4 illustrates advocate a view of the device simulator as an
this, showing calculated results for GaAs. environment which will set up a device band
Notice that the upper band becomes very structure upon which the device physicist has
nonparabolic-this too is a general feature. the option of either solving "standard"
Near the band maximum, the effective equations, or else of embedding his own
density-of-states mass is only 0.17, in contrast device physics. Because this is too ambitious
to 0.5 for the heavy holes. The stress terms a goal for the present purposes, we have
enter into the Hamiltonian as described earlier implemented a simulator with a fixed set of
in the theory section, and an 8-band simulator physics, but have attempted to write code that
could incorporate these effects. We carried will be applicable to a future, more general-
out numerical experiments in which the band purpose, device simulation environment. I
offsets were varied, and found a very small would note, however, that this program has
effect. The main effect of stress is expected the capability to solver a simple
to be upon the valence-band density of states. Schroedinger's equation, using as the

potential, the conduction band of a simulated
Our Tensor package, discussed in a following device. This can be regarded as an example of
section will allow one to easily calculate the utilizing the main program to provide an
energies of the bands in an arbitrary stressed environment in the form of a realistic band
semiconductor, and this has been used to structure, for the purpose of studying quantum
produce the graphics shown in Figure 16. effects upon charge distribution, and of testing

a novel algorithm for the estimation of the
Hartree (Quantum) charge.

Simulations Simulations can be broken into several parts: a
Schroedinger's equation integrator, a Poisson

We have developed a computer program to solver, driver routines to produce J/V curves,
calculate the direct interband tunnel current, as etc:
illustrated in Figure 1. The direct thermionic

12



In this proposal, we have been primarily At this time, the computer most used at
concerned with the solution of Schroedinger's ZYTRON for running simulations is a
equation for the case of two coupled bands. Macintosh Ilcx with a Radius Rocket
This may be said to be the core of the project. accelerator. This machine uses the 68040

RISC microprocessor, and is about as fast as
Before the Schroedinger's equation can be any Macintosh system available at this time.
solved, the band diagram is needed. One reason for our interest in transporting our
Schroedinger's equation can be solved for the codes to UNIX, of course, is that there is no
resulting potential wells. In special cases, upgrade path available to make computations
however, it is desirable to solve the upon a faster Macintosh computer.
Schroedinger's equation for simple wells. The
computed results can then be compared with Our present simulator would be expected to
special cases for which exact analytic results run on almost any Macintosh-compatible
are known. Generally, however, the actual computer, although if the machine lacked a
band diagram is needed to predict the floating point processor, the program would
performance of a real device, need to be re-compiled to obtain a non FPU

version. A non FPU version would frankly, be
It is a conceptual complication of device so slow as to not be very useful.
physics that one tends to think of a process
such as a particle tunnelling through a barrier
in isolation, and yet actual devices are Mathematical Models
composed of many particles, and
measurements observe averages. A device I t we have been primarily
physicist with a good understanding of the concerned with the solution of the
underlying physics will often grasp a concept coedier eution o the
such as resonant tunnelling easily, but it is Schroedinger's equation for the case of two
often far from clear how this process will coupled bands, which can be written in the
affect a statistical average. Driver routines matrix form discussed in the previous section
must direct the solution and presentation of a and written as equation 2.
single quantum well problem (a single energy, This may be said to be the core of the project.
for instance) when this is needed to help the To calculate transmission through the barrier,
user visualize the underlying physics, and then by tunnlae transmission
the driver must direct the solution of an by tunneling, one needs the transmission
ensemble of tunnelling problems and integrate coefficients, which can best be defined by
the result to compare the theory and referring to Figure 5, which indicates the
experiment. proper normalization, with a graphic definitionof the various waves. A complete linearly

Simulation Environment independent set of soltdons to the
Schroedinger's equation can be used to create

Zytron's long-term interest is to develop a solution as defined in the figure, but in
software for a variety of platforms. Early practice some solutions are close to being
versions of the user interface ran on both linearly dependent and lead to large numerical
IBM-PC-compatible computers and Apple errors.
Macintosh computers. However, because we
did not have the resources to maintain
working graphic user interfaces (GUI's) on
both machines, later development
concentrated upon the Apple Macintosh, so
that we would have at least one working GUI.
The availability of a working GUI for
numerical applications has proven very useful,
and may lead to a standard form which can be
transported to PC and UNIX-based computers.

13



and the "backsubstitution" for general
1 e+ik.x matrices.
L Numerical Difficulties

T e+ik.x The Schroedinger's equation takes the form of

R -xa set of two coupled (ordinary) differential
equations. The solution of differential

R e-i\x equations is often regarded as straightforward,
but for our purposes there are two difficulties
which deserve special attention. The first
concerns the fact that in some cases the actual
equation is not well behaved. Figure 6
illustrates a pathological band diagram. In a

Figure 5 real device a particle "propagating" at the
This illustrates the normalization for the calculation forbidden energy Et will consist of an
of a transmission coefficient. The wavefunction exponentially decreasing wave. In the case of
should be normalized for unit flux not unit figure 6, however, the wave can propagate
amplitude. In multiband models the velocity is unattenuated with momenta at point Q. The

result is that the transmission coefficients
V = h d always take values close to 1, and the

V -, and not just k. computed tunnel current is very large. While
this is a pathological example, such situations

Each incoming wave transmits independently can and do arise when one attempts to find a
of the others, so the total current is "best" fit to the band structure at the F point.

The X point, which is the boundary of the
Brillouin zone in the A direction is near

_gq r I l/nm, and so the pathology shown by this
f (2ir)2 J dEITC(f, - fR) [6] example is far out in the band diagram. In a

r (real global band structure higher-order effects
keep the gap open. The discretization can

g = degeneracy = 2 and fL is a Fermi function mitigate this problem by truncating the
available configuration space to include only
low k values, but the results will depend upon

1 the details of the discretization. Essentially,
fL = e~ u -E) Fermi Factor and this amounts to the use of a tight binding

-r fHamiltonian. In our case, we forbade the use
similarly for fR. of band parameters which close the gap. It is

As has already been pointed out, the band easy to show that the gap will be open if

diagram is needed before the Schroedinger's > 0
equations can be solved.

Before leaving this subject, I want to
emphasize that this pathology is not a feature

Numerical Methods of the solution method, but instead is a
pathology of the band equations themselves.

Almost all of the core numerical routines used This pathology can arise in the 8-band model
in this project trace back to routines in the as well as in the 2-band model used in the
book "Numerical Recipes in C"16. The most present research.
significant addition, made, was a set of
routines for banded matrices, which are The second difficulty has received attention in
however based upon routines in Numerical the literature McGill, et. al 7, but is easy to fix.
Recipes for the upper-lower decomposition, A two-band Hamiltonian will have two
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solutions, one of which will generally grow at element method, which can be viewed as
a large exponential rate. If the equation is using a set of "tent functions" as basis
integrated using a differential equation elements (see Figure 7). The Hamiltonian H
algorithm, such as Runge-Kutta, then the fast ( or Laplacian, L or inner product K ) are all
growing solution will overwhelm the other. computed by performing integrals:
Unfortunately, the physically-relevant
solution, is the slowly growing solution. It = (hi I hj\ f hi (x)hj (x) dx
can happen that the precision of the machine is '
inadequate to uncover the relevant slowly- dh (x) dh
growing (or oscillating) solution. When L= (Vh, IVhj) =J-d-x)][ dx
phrased in terms of linear algebra, this
problem can be vie wed as the result of using
an unstable ordering to solve the equations H requires additional terms but is similar.
(the importance of pivoting in the solution of Figure 7 lists some of the needed integrals. In
linear equations is discussed in length in many our basis set, these are all banded matrices.
textbooks, such as Numerical Recipe's). Our Computation of the A-band matrix equation
solution to this problem is to use an ordering solver can then be used to find the potential, or
in which the diagonal matrix elements are Green's function. The form shown here for L,
used as the pivots. The Schroedinger's in which a first-order derivative is applied to
Equation is diagonally dominant for "small" each element, instead of a second derivative
energies, where "small" is relative to the being applied to the right element, is superior
maximum, and so this works well. McGill et in two ways: first, it is generally easier to
.al. use a tight binding approach, but I believe compute, and second, it is manifestly self-
that it is in actuality very similar to our adjoint, while the double-derivative form is
method. This problem and solution are well only self-adjoint if the boundary conditions
known in the literature of device simulation. are properly handled.

4One may note that this form of the differential
equations has no obvious boundary conditions.

2 If we simply proceed, we find that in fact the
equations amount to Neuman boundary

k conditions, in which the derivative of the
2 4 a 1 12function is zero. Dirichlet boundary

-1I conditions, in which the value is defined, can
-2 be obtained too. To specify Dirichlet

boundary conditions, one must modify the
41 equations. First, the values at the ends are no

longer "unknowns," and so the number of
Figure 6 equations must be reduced by removing the

equations for the end points. The values of the
This shows the band diagram for AllnAs, in which the end points will then give rise to an
band parameter a2 has been set to 0.05, while the other inhomogeneous term for the nearest neighbors
parameters retain standard values. Normally a2 and e2 to the ends.
are both negative. This change has a very small effect
upon the band structure near the r poinL For very In our simulations, the Schroedinger's
large k's, the conduction band has a maximum and equations were solved for both types of
bends down. The result is that there is no gap. boundary conditions, with the user being able

to select which solution is desired. The
Representation of Differential Equations Poisson's equation was always solved for

Dirichlet boundary conditions because L has a
Three different differential equations arise in zero eigenvector (constant potential not zero),
this research, but they can all be solved using which makes L-1 undefined.
essentially the same method. We use a finite
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The basis functions used in this work are piecewise linear, and can be
considered to be a linear superposition of the "tent functions" illustrated here.
Matrix elements involving piecewise linear potentials or derivatives are easy
to compute using the accompanying formulae. These basis functions turn out
to be non-orthogonal, so that the inner product must be computed, but this
turns out not to be a large complication. The matrix elements can be derived
from simple formulae, as shown. The actual program used a generalization,
to allow for nonuniform grid spacing.

Figure 7
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An advantage of the finite element method when li- gv < Eg the band gap.
over finite differences, or over tight binding Straightforward algebra shows that if nc and
methods, is that it is easy to use an irregular nv obey equation 3 with 0=4), then one
grid. In our case, the device is first defined as iteration of Newton's method applied to
a set of regions, one for each material, with finding a better 0 is equivalent to solving the
discontinuities (in the band edges) allowed at equation:
the boundaries between regions. Our grid
routine places grid points at the boundaries, -VE =
and then adds additional points until a total
number of grid points is reached. [ dn, 

A complication of the two-band model is that q do
the wavefunction is defined by two amplitudes
at each point, not one. In the case of an n-band [10]
model, one needs n amplitudes at each point,
one for each band. Our present program dn
represents the wavefunction upon an N point - Taken at * =
grid as a single 2 N long vector, with v[1] and dO
v[2] representing the conduction and valence
band components, respectively for the first where O is our initial guess for 0, and to
gridpoint. v[3] and v[4] represent the same calculate the derivative we will use the fact
bands at the second grid point, etc. In order to that
make the text more clear, however, I will write
as though there was a separate length-2 vector dF. (z)
at each grid point so that the conduction and d,
valence band amplitudes at the first point will
become c[l] and v[l]. Newton's method converges rapidly if the

initial guess is close to the final solution, butPoisson's Equation Solver can diverge if it is not close enough. We start
with the carrier concentrations equal to theOur Poisson equation solver assumes that the doping, except where the doping is very small,

carrier densities are in equilibrium, but with a in which case we put 0= (Ec + E)/2. For our
separate chemical Potential for electrons l quasi-equilibrium case, it is possible to
and for holes tv so that the carrier guarantee convergence. We simply compute
concentrations can be written as: the free energy of the device for the new 0. If

I the free energy does not decrease, then we
... F2m i 16 _% know that our new 0 is not better than the old.

n., F (fl(, - E, + 0)) If the free energy increases, then we can try aL new Onew = (0 + O$)/2. This trick to guarantee

Sg [2mj ,convergence worked wonderfully when I
n,= F-,4 =Pp - E0 + O)) applied it to an FET simulator several years

(2x) h2ago. In this case it was rarely needed, as
[8] Newtons method almost always converged

unaided. One can note that the fermion free
while 0 obeys Poisson's equation energy density is given by

3 -

-Ve V0p=q(nd+n-n¢) [9] G= [ 2mi,-2 F[91 G=(2I')2 h2 2"-F,(Pt ))+ nE .

Real equalibration would require pc= pt, but 1
equation 3 can be solved for any pc, lrv pair, +2 op + Boundry Terms
and gives a physically reasonable solution 1 la,
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where (H- Ek)G, = c, or v, [12a]

A separate contribution must be added for and we refer to G as a Green's function,
each band, and to avoid counting the because we will generally put
electrostatic energy twice, Eb should not
include the electric potential. One can also ck[i] = 0 / k
write the total electrostatic free energy as

cF[k=l Similarly for+ op 12b]

F = -- e(VP) + 'P = -'PP + Boundry Terms The simulation package will allow the user to
1 lb, set k to any integer and view the Green's

function, but for the purpose of computing the
which defines the boundary terms in eq. 1 la. transmission coefficients, we will only use k =
This equation can be used to define the 1 or k = N, the length of the grid. Setting k= 1
boundary terms. Unfortunately, equation 1 lb and k=N, the Green's function solutions give
is not positive definite, so that the solution to us a set of 4 (at each point each band gives a
Poisson's equation itself must be used to solution) wavefunctions which obey equation
compute the free energy, not the approximate 12, inside the device. One can then consider
solution obtained from iterating Newtons the constraints of no ingoing waves, except lvr
method. We always used Dirichlet boundary an ingoing wave of unit amplitude. This
conditions for finding 0, but one could use solution method incorporates a boundary
Neuman boundary conditions for 0 if the condition on both the left and the right, and as
Newtons method is used, and the free energy a rule only exponentially decreasing functions
is not checked, as equation 10 is well defined are obtained. As a result, the matrix
for Neuman boundary conditions, unlike operations needed to calculate the
Poisson's equation. transmission coefficient T, and the reflection

coefficient R, if desired, are well conditioned.
Last, for the solution of Poisson's equation
using Dirichlet boundary conditions, one must Eigensystems-Calculation of
specify 0 on the boundaries,. We set 0 such Wavefunctions and Energies
that the carrier concentrations would equal the
doping, so that everything behaves smoothly. In order to calculate ate t e ransmissioncoefficients, one must create the Haniltonian
Once the equations are in the form of linear and the inner product (our basis set was not
equations, it is easy to solve them numerically. normalized). The Numerical Recipes routines
Newtons method is used, and iteration is for the solution of general (symmetric)
stopped when the potential og is very close to eigensystems was used to calculate energies
the potential 0 obtained by solving Poisson's and wavefunctions. This was expedient to do,
equation using the charge distributions defined as I had heavily used the routines in the past,
equaon and had written the Graham Schmidtby 4g. orthonormalization routine needed to create an

Calculation of Transmission Coefficients orthonormal basis set. This is not very
efficient, for our instance, as it does not take
advantage of the banded structure of theAs described above, the fimite element gives Hamiltonian, or the fact that often only theus a representation of the Hamiltonian, H, and lowest few cigenvectors are needed. It was

the inner product, which we will call K. If our not expected that the eigenanalysis would be
basis were orthonormal, K would be the us ed tha the izai ould be
identity matrix, but that is not the case here, used very much, so optimization could not be
where K is a banded matrix. As discussed justified.
above, it is straightforward to solve the linear
equation for G:
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Calculation of Fermi Integrals i 2 )

The charge densities and free energies used in FJ(z) = C 1og 1 + Ae' 3 + Be'3 )J
this work have required the calculation of -
Fermi integrals: C -

- x'dxF . ( Z) = A

and of the inverse function. Note that this B = 1.22

differs by a factor of F(n+1) from a 4

commonly-used convention for these Fy(z) = CY log + Ae 25 + Be' 5 J
integrals. Our simulator includes a package to l

compute such integrals. If the argument, z, is A =1.2934
very large, then an asymptotic formula is used; B = 1.1
otherwise, the package simply carries out a
numerical integration. Numerical integration C = 0.69877
is too inefficient for those orders which are
heavily used, so that for certain orders a table Inverting these formulae requires solving a
is tabulated. Those orders which are accessed quadratic equation to obtain the exponential
often (hundreds of times by the Poisson solver terL
for orders 1/2 and 3/2, for example) do not
result in constant reintegration. Our routine
will work for negative (non-integer) orders, as Note on units
it treats the region near x=0 by making an
analytic approximation that allows us to It is surprising how often the units for physical
access order -1/2. Order 0 is treated as a quantities can cause difficulties to calculation,
special case, as even for "experts." Many papers use units

such as "atomic Units," which eliminate
F0(z) = log(l + e) "constants" but are often difficult to translate

into "normal" units. Worse, "bastardized"
Inverses were not needed often, and we used a units, which combine some MKS, some CGS,
Numerical Recipes routine based upon and occasionally some non-metric as well, are
bracketing and bisection. This, of course, common.
could be dramatically speeded up if needed. The convention which I have found to be best

As a final digression, we add our own is relatively simple. It works well to base
contribution to the long list of approximations units upon MKS, or scaled MKS. This is in
to the Fermi integrals for orders 1/2 and 3/2. contrast to atomic units, which make some
These have the property that they are easily fundamental constants equal to 1. The utility
invertible and exactly reproduce the of such units is especially doubtful in solid-
asymptotic behavior of the exact integral. The state physics, where so many "constants," such
form for order 1/2 is accurate to an astounding as e, are dependent upon the material anyway.
1% for all values of z, while the form for order In this work, the unit of length is the nm, for
3/2 is off by 7% at the worst. The forms are: example. One advantage is that all the

fundamental constants are tabulated in MKS
and can be used directly. There are however
special exceptions, the primary one being the
use of electron volts for the microscopic unit
of energy. "Microscopic" means that it refers
to a single particle. In device physics, other
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energies sometimes occur, such as power User Interface
dissipation, or capacitive energy. These
macroscopic energies are best kept in pure In twenty years of programming to solve
MKS units. numerical problems, I have observed that
As a special help in keeping units straight, I input/output issues lead to an inordinate

generally introduce a set of variables called amount of difficulty. Most programmers tend
UNIT_L. UNIT_E, etc., which hold the MKS to do what comes easily, which makes theirvalues of all units in use (length and energy in programs very hard to use. This contract hasvales oasel units tinuse (oenthond enery n provided an opportunity to experiment with athese cases). With this convention, one can graphical user interface for numerical work.
scale any item correctly and even change the We have tried to make the interface easy to
units in use later. program, so that it could be kept "up to date"

as the numerical goals changed. In this, our
interface differs from the traditional graphical

Note on Notation user interface (GUI), which typically requires
great time and expense for each problem. In a

We have generally attempted to follow "typical" GUI application, such as MacDraw,
common notation in this report, but in some the interface in fact comprises most of the
cases there is no universally-agreed-upon program, and is certainly the most difficult
notation, and in at least two instances our part to implement.
notation is known to be at variance with
frequently used notation: The User's View

Our notation for Fermi integrals is Other than launching the application, all user
interaction and file I/O is carried out through

x'dr the user interface. As much as possible, IF. (z) J (.az have attempted to conform to the Macintosh
0 I+e user interface guidelines, and published in

"Inside Macintosh" 17 and elsewhere. These
while others often use are, in fact representative of good GUI

principles, and so this is not a great loss of

e.(z xd generality. User interaction takes three forms:
F () + 0 + e(x- z)  selecting pull-down menus, viewing plots, and0 editing variables.

I frankly fail to understand the motivation for At present, the plots are generated as part of
the r function; it appears to only make the commands to perform a computation; they
later algebra more complex and error prone. take very little time to produce, and can be

immediately deleted by a user who does not
Some writers have used T to denote the square want them. Each plot appears in its own
of (our) transmission coefficient. I would window, which can be dragged, resized, or
point out that the subject of tunneling is the deleted, independently of any other plots. The
aberration; in other disciplines, ranging from ability to drag plots makes it easy to compare
high-energy physics, to microwave different ones, such as the two-band diagrams
engineering, one generally speaks of a shown in Fig 8. Fig 8 is a "screen dump,"
scattering amplitude, which is a complex showing a set of six representative plots The
number, and the flux of scattered energy plots in Figure 8 are as follows: The upper-left
varies as the square of the amplitude. Our plot shows the band diagram and carrier
notation is thus in agreement with the greater concentrations for a double-well RITD with
body of physics and engineering literature. two 4nm wells separated by a 4nm barrier.

The other plots all concern a similar device
with a 6nm barrier. The remaining plots are,
in clockwise order, from the upper right
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The transmission coefficient verses energy of The Editor
the incoming electron (broadest peak). The
two other curves are the Fermi function The most unique feature of our user interface
difference (rightmost peak) and the product is a special editor for numerical variables used
T12 (Fl - FR) --- the sharp peak in the middle. by the programs. Variables are listed in a

window, which scrolls if needed. This feature
Quantum wavefunctions. The conduction of the user interface can be described as a
band can be used as a potential to solve a great success, in that it improves the
simple Schroedinger's equation. This plot productivity of the user substantially. Figure 9
shows the band, and the first six energy shows how the computer screen appears, when
eigenfunctions, with the boundary condition of using the editor.
zero derivative at the ends. Pull-Down Menus

Charge densities. This plot compares three
charge densities. One is the Fermi-Thomas The pull-down menus allow the user to
charge density, the others are the Hartree specify any one of a set of commands:
charge density, and the last is an
approximation to the Hartree density, which is The File Menu allows the user to save
much easier to compute. The approximation variables in one of two AASCI-based formats,
is very close to the Hartree density, but is and to read the variables back in again. The
slightly larger. The details of the standard format is designed to allow the same
approximation are discussed in the text. variables to be read back in by the simulation

program. As an alternative, the variables can
Green's Functions. This shows a Green's be saved as a Mathematica file. In this case,
Function, a solution to the Schroedinger's the file can be read by the program
equation, with an inhomogeneous boundary Mathematica , and the variables will all be
condition. The two curves show the two defined with the same names used in the
components of a 2-band wave function. The program, and the same values as when they
wave function does penetrate through to the were first saved. In this case, the powerful
right, but is difficult to see, as the tunnel graphical and transformation capabilities of
coefficient is only of the order 0.01. Also Mathematica can be used to analyze the data.
shown is the band diagram. At this time, variables can be integers, real

numbers, or vectors.
Band Diagam. This is the band diagram, and
carrier concentrations for the double-well The Quantum Menu is the main menu for
RITD, with a 6nm barrier. Also shown are the directing the solution of equations. A device,
carrier concentrations. Note that it can be or quantum well, must already be defined in
compared with the band diagram of the 4n order for the choices on this menu to be
barrier device, which appears directly above it. available. In this case, one can:

resulting from device simulations. Plots are Solve the Poisson's equation, self-consistently,
intended to give rapid feedback to the user of for a device. The charge density will be given
what the simulator is doing, and are not by a Fermi-Thomas approximation with finite
intended to be "publication-quality". temperature.
Publication-quality graphics packages tend to
be much slower and to use more memory. Compute Quantum wavefunctions for a
The stored output of our simulator can be used quantum well. At this time, a simplified
as input to software that produces better system is solved using only the conduction
graphics, if desired. Many of the figures in band, and using a constant mass. Nonetheless,
this report were produced by reading data into the solutions are useful to help visualize the
Mathematica and then creating plots, device physics. The quantum well can be the

result of solving the Poisson equation, and so
it can be realistic. The wavefunctions can be
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used to commute the "quantum charge," which present, representing all of those used in this
is the "exact" charge in the Hartree model, work. A device-creation routine can reference
assuming band-filling obeys usual Fermi variables that are editable in the v-editor, and
Statistics. so a single device routine is all that is needed

to create any one of a large set of devices,
Quantum Chare is available only after the such as any double-well Resonant interband
wavefunctions have been computed, and will tunnel diode.
calculate the charge density. This menu
choice also calculates and displays an Programming the Interface
approximate charge density, to be described
elsewhere. When the design of this simulator was begun,

it was hoped that it would be possible to
Green's Function will calculate a Green's design the interface in such a way as to make
function for the Schroedinger's equation. The it very easy to program. While, the interface
Green's functions are used to calculate the system is "easy" to program, relative to
transmission coefficient, but are recomputed alternatives, full attainment of our goal was
when needed (the computation is fast). limited by the present state of the art of

software tools. It now appears almost certain
Transmission Cue will calculate the absolute that standard c does not allow attainment of
value of the transmission coefficient, M this goal, and the use of a pre-processor would
verses energy, for a single one-dimensional appear to be indicated. A serious problem
quantum well. Also computed, and displayed, with c is that the same (or similar) information
are the difference in Fermi coefficients (FI - must be manually entered in as many as 5
FR), which weight the energy by the places in the program. This causes an obvious
occupancies on the left and right, and the waste of human effort, at best, and can be a
product IT12 (F1 - FR), which is the integrand source of serious programming errors as well.
that contributes to the net current. A summary of the entries needed is:

The Transmission vs Kpar choice will 1. Variable declaration.
integrate the current at a fixed bias voltage,
and display the integrand as a function of the 2. Create a data structure: The editor must be
parallel momentum (Kpar). Thus each point aware of the variable and its properties,
on the integrand curve represents an integral including its default value and type. For this to
over energy. be the case the information must be placed

into a data structure, which is handled by
The J/ curve choice performs a double calling a subroutine
integral over energy and parallel momentum
for a range of bias voltages, and displays an 3. Allocate memory: If the variable is a vector
entire J/V curve, or matrix, storage must be allocated for it.

The Variable-Edit Menu is used to start a 4. Free memory.
new instance of the editor, which will be
discussed later. 5. Update variable: At present, the editor

knows (from the data structure set up in 2) the
The Junk menu is a set of routines that are not location in memory where the variable is
closely related to device simulation (although stored, and automatically incorporates changes
one will plot Fermi Integrals). They were made by the user. There is thus no need for
used as test programs for early versions of the independent programming for each variable;
human interface. however, this arrangement makes it too easy

for the user to destroy the integrity of the data
The Device Menu causes a device data structures. The user can, for example change
structure to be defined. Roughly 10 devices
and quantum-well structures are defined at
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Carrier Done tl

This shows a "screen dump," made while the ZYTRON device simulator was running. It
shows a copy of the actual computer screen, except that the original is in color. In
transtc ining to a black-and-white form, the graphs become more difficult to read than they are
on a color monitor, and some features, such as labels upon the "unselected" plots do not appear.
By clicking and dragging with a mouse, the user can move, resize, or delete plots. In normal
operation, plots tend to overlap to a greater degree than shown, but are redrawn when selected
or uncovered. In this figure, only the upper-left plot is significantly obscured.
The upper-left plot shows the band diagram and carrier concentrations for a double-well RrrD
with two 4nm wells separated by a 4nm barrier. The other plots all concern a similar device
with a 6nm barrier. The remaining plots are described in the main text

Figure 8
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the value used to indicate the dimension of a
vector, without the vector being reallocated to Efision has tended to cause trouble in C,
reflect the change. because the C convention wants to convert

everything to a double prior to carrying out
By means of a preprocessor, the relevant operations or subroutine calls. While this has
information could be entered only once, and been alleviated somewhat in the ANSI
all other entries would be made in a consistent standard, there are still compilers for which
manner. operations on floats are slower than on

doubles. In most of our code we use a type
Setting up the menus also required not only FLOAT, which is to be defined in math.h.
that compatible information be entered in Thus, the type can be changed easily and in a
several parts of the program, but also that a global fashion.
utility program called ResEdit be used to
create the entry in the menu bar. Extensions to the vector and matrix routines
Programming the menu system was further have been added. The Numerical Recipes
complicated by the fact that not all menu Routines for vectors and matrices are
choices are relevant all the time. One should extremely useful, and we have made several
not, for example, be able to solve for a band minor "extensions." Vectors and matrices are
structure before a device structure has been set represented as pointers. One extension is to
up. In the present implementation, a set of allocate a few extra bytes at the start of the
flags indicate the status of the data structures, object. The actual value of the pointer can
but the nature of this problem was not still point to the start of the data, so that this
appreciated until a version of the simulator change is compatible with all of the standard
was running and could be tried out. A more NR routines. These extra bytes can be used to
systematic approach should make setting up store information about the object, such as the
the enable/d ,able flags much more length. The main use, in fact, is that there are
straightforward. length functions which can be applied to

(most) vectors, and matrices, and which will
On the other hand, programming the plots return the dimensions. At present, the system
proved to be easy, as there are only a few only really works on standard origin-1 objects,
subroutine calls which need to be made-one but there appear to be ways to improve this.
to create the plot, one for each curve to plot,
and one for special options such as forcing A banded matrix type has been added. In
two curves to use a common coordinate general, we have delayed detailed
system, or drawing a line at 0. Other plotting optimization of our code until future versions,
subroutine packages which I have used require but the simulator needed some band-matrix
large numbers of parameters to be specified, routines very badly, and there is a clever way
such as the location of tickmarks, labels, to store banded matrices in C, which (to my
colors, etc. My present philosophy is that knowledge) is not widely used. In brief, the
reasonable defaults can be made so that none trick is to modify the NR matrix routine, so
of these parameters are needed, and one can that the allocated column is the width of the
allow the user to change the plot style if they non-zero part of the column. The special trick
wish. is to offset the pointer, so that element Mi - is

Special Tricks referred to as Mfi]]. Thus, a routine need not
really take into account the banded nature of

Several special tricks have been added to what M, except, of course, that it must not refer to
were essentially Numerical Recipes the non-allocated elements of M.
conventions for numerical computing in the C
language. This section presumes a familiarity
with C, and with the material in Numerical
Recipes in C, referred to as NR for the rest of
this section.
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standard form. Our standard form utilizes the
New or Original Work fully symmetric products of J matrices, as the

fundamental objects, so that we have,
The material in this section is varied, but is
characterized by it's being substantially the 3 J's themselves
different from other approaches taken to solve
similar problems. Of course, symbolic 5 symmetric trace free products
manipulators have been heavily used in I 5bj 2

physics, and our Tensor package is modeled j 3jb and
after the y matrix packages designed to help
high energy physicists cope with the
complexity of the Dirac equation. The 7 products of 3 J's.
methods under development for the estimation
of the Hartree charge density is, to my Together with the identity matrix, this gives us

knowledge highly unique, but similar methods all 16 possible 4-by-4 matrices, in accordance
may have been used at some point in solid with group theory's assurance that there can be

state physics. no symmetric trace-free product of 4 or more
spin 3/2 operators. The result is quite

Spin 3/2 Tensor Package general-in the case of spin n/2, there can be

no symmetric trace-free product of n+l or
The theory of the valence bands of zincblend more operators.
semiconductors has been plagued by algebraic
complexity since the mid 1950's, when the First we reduce all unsymmetrized products to
need arose to incorporate both spin orbit a fully symmetric form using the commutator:
splitting, and band warping into the
Hamiltonian which describes the band 2 jlajbl = i ab*j c

structure. On the one hand, the equations are
complex and their manipulation by "manual" where square brackets denote
means is slow and error-prone, while the whrsquaerats den
equations are also characterized by a finite set antisymmetrization. The remaining fully-
of operators, closed under (non-commutative) symmetric products constitute our standard
multiplication and addition. These facts form, and of course all products higher than 3
suggested that computer manipulation would (1 for spin 1/2) are set to 0.
be an appropriate tool to advance the The sum of diagonal elements of a matrix is
formalism used to describe the physics of the independent of the basis, and is usually called
valence bands. With this in mind, we the t he b ai an i su ace
implemented a special tensor package in the trace, but to avoid confusion with the trace
Mathematica which will manipulate the mentioned above, contraction with a e, we
tensors and non-abelian operators arising in will call it the spur. In any event, the spur
complex multi-band theories, such as the becomes trivial to compute, as the spur of a
Luttinger Hamiltonian description of valence trace-free product of J's cannot be non 0. This
bands. is a result of group theory, as the spur is a

scalar, under rotations, while a trace-free
OpMrator Algebra product of J's transforms as an irreducible

(non trivial) representation of the rotation
The core of the tensor package, is made up of group.
operator reduction routines to manipulate the
spin 1/2 and spin 3/2 angular momentum
matrices. Our package is unusual in that it is
"basis-free." Basis-free calculation has been In order to manipulate expressions involving J
used for many years by high-energy physicists operators, the tensor package must also

to manipulate the Dirac y matrices. Two manipulate the antisymmetric tensor EC, and
simple formulas suffice to reduce n the delta, 3"". Finally, the tensor package will
expression involving the J matrices to a
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manipulate the tensor T4 , invariant under the
cubic group. Additional invariant tensors also
can arise, as T4 's are contracted, but a total of spur (HL) = -27 1k2

two can be used to make a complete set. M.
Application of Tensor Package Taking the trace of the square, using the tensor

package was easier than typesetting the
As an example of the application of the tensor resulting equation:
package, we can take the spur (trace) of the
Luttinger Hamiltonian:

spur (lL 2 ) = (!Jz{(r - 2y 2  + 67 2 )k2 + (6y 2
2 -6y 3

2 )T" dkakbkckd}

At this point we essentially have the energies, for if

a=1

1b=-spur (HL) and
2

C = 8 [spur (HL)2 
- 2spur (HL2)I then the energies E obey

aE2 +bE +c=O

It should be added that the symbolic
manipulator has a few quirks. For example, it

The energies obtained agree with the energies fails to recognize that
known by other methods. We have repeated
the above, with stress terms added to the 0 = evPJAS=SP#
Hamiltonian. Most limiting cases can be done 0
fairly easily "by hand," but the case of stress where S, and J3 are symmetric tensors (it is
in an arbitrary direction, and without assuming told the symmetry property of all symmetric
that stress terms dominate over kinetic terms, tensors). Fortunately, such combinations have
is quite complex. not arisen often and can be "fixed" by hand,

and, in any case, they do not make the resultAt this time, the computer manipulation of the "incorrect"
Luttinger and related Hamiltonians shows
promise of producing intermediate results that
are simple enough to be comprehensible to
human physicists, and these methods are being Better Approximation to Quantum
used to compare the various formalisms for Charge
band-theory calculations (i.e., Luttinger, vs. 8-
band, vs. 6-band, etc.). The original One interesting byproduct of our research has
motivation for coding the simulator was as an been an expression for the charge in the
aid to estimating scattering processes within Hartree approximation, which incorporates
devices. It is expected that such work will quantum effects but is numerically easy to
proceed, although there was not time to pursue compute, as one does not have to solve an
it extensively under the present contract. eigensystem. This formula has been
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demonstrated at this time under restrictive matrices instead of solving complete
assumptions, but the concepts used to derive eigensystems.
the original formula can be improved upon, so
that quantum-charge densities can be obtained The Poisson solver in our simulator uses a
for multiband models, and the overall Fermi Thomas expression for the charge
accuracy can be improved as well. It should density:
even be possible to generalize the formula to
an approximation of the tunnel currents. so g F2m1X -y
that numerically-accurate descriptions of the n = -g2', f J 2F (p - E +))
device physics become available by inverting ( 2 r)h2Y
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This shows two examples of the quantum charge approximation. In both cases, there are
three curves: one is the "exact" Hartree charge, one is the Fermi Thomas charge, and the
approximate quantum charge is shown too. Figure 8a shows a set of deep multiple
quantum wells, with a relatively low m. In this case, the Fermi Thomas approximation
not only misses the "smearing out" effect of quantization, which is to be expected for any
rapidly varying potential, but it grossly overestimates the total charge, which is worse.
Figure 8b uses a "real" potential obtained using our Poisson solver to self-consistently
solve Poisson's equation and the number density equations for a tunnel device. In this
case, the overall agreement between the Fermi Thomas approximation and the quantum
charge densities is good, indicating that the Fermi Thomas approximation can be used,
but the quantum charge densities are spread out, as one would intuitively expect. The
sharp rise in quantum density at the left side of the figure is a result of the fact that
Neuman boundary conditions were imposed. The quantum approximation tends to
overestimate the charge, but this would be easy to correct for, as the overestimation will
generally be roughly proportional to the Fermi Thomas charge.

Figure 11
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Band diagram and carrier concentrations for a double well device with
4nm wells and a 4 =r barrier.
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Figure 13b

Computed IV characteristics for two devices. Fig 13a shows a double well device
with 4nrm wells and a 2nm barrier. The shape of the IV curve is typical of"reasonable devices. Notice the linear slope of the log plot. Fig 13b shows a barrier
only device, with GaInAs contacts and a 4nm barrier. This device had a doping level
of 30 1024 on the n side and 15 1024 on the p side. The density of states mass was
left at 0.048 on the n side, leading to an unphysically high Fermi energy.

Figure 13
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IN characteristics measured for RrrD devices. Both are double well, single barrier
RITD's. The first has 3nm wells and a 4nm barrier, while the second has both wells
and the barrier 4 nm long. The 4nm well device shows two curves, which are for
two different devices on the same wafer. The maximal currents are well matched,
but no the series resistance. Near the edge of the wafer the maximal currents
increase.

The negative resistance parts of the curves show awe not stable, and the parameter
analyzer shows only artifacts of oscillation at these points.

Figure 14
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Figure 10

This compares the Fermi function F0 (z) to a rational approximation. Both a linear scale and a log scale are

used. On a linear scale, agreement is good for all z below about 6, at which point the approximation falls
rapidly while the real Fermi function continues to grow linearly. Looking at the log scale, we can observe that,
while the approximation is "small," the real Fermi function is smaller. This is to be expected, as no rational
function can match exponential decay.

approximate F0 by a rational function that
most of our work has used:

The Hartree approximation, on the other hand,
requires us to solve the eigensystem for the F(z) = 3.5 1I
perpendicular degree of freedom [ a
( I dimensional quantum well ). It then fills in
the charge separately for each eigenvector: where

n(x) = g 2m , p V.. X ),((x)FO O -El _ -XI
E. r(X)=I+x+r+x =- + - [13]

where we have assumed, for now, that the Figure 10 illustrates the accuracy with which
degrees of freedom parallel to the quantum Fig 1u t rates he a c thwwell are factored out from those perpendicular this function approximates Fo(z). If the
to the quantum well. Hamiltonian has an eigenvalue, Ek, such that 13(g - Ek) > 6, then the approximation will fail,
Our approximation is based upon the density but one can re-scale the system by a factor a
matrix formulae: according to

n(x) = p. Fo(z) - a P I -

P=gvp-(, k V ((P While this is not as good an approximation as
equation 13, it will generally be fairly

where the function FO(...) can be defined by a accurate, and in fact this re-scaling will
power series or other means. A key step is to usually be needed except at very high

temperatures.
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use of "hydrodynamic like" equations for the
The point of all this is that evaluation of the understanding of semiconductor devices.
rational approximation requires only matrix
multiplication, and inverse, and not
eigensystem analysis. For sparse matrices, it
will often be preferable to evaluate the rational Simulations
function by means of partial fractions, because
multiplication will quickly fill in the zero All of the simulations carried out have been
elements of H, while a banded matrix with based, to some degree upon a set of devices
narrow width can be quickly inverted, fabricated at the Varian Research Center, in

Palo Alto C., and the details are described in
Figure 11 illustrates the actual use of this the section on those devices. Experimental
approximation for a scalar Schroedinger's variation of the materials and device
equation. The agreement turns out to be parameters were carried out and some general
excellent. Referring back to Figure 10-the conclusions can be drawn, especially with
rational approximation fails to fall off rapidly regard to the sensitivity of device
as z -- -. The asymptotic distribution of characteristics to materials parameters. A great
eigenvalues of H is known (this is after all the amount of detail of device operation was
basis of the Fermi Thomas approximation), computed, Figure 12 illustrates a band
and so this effect can be estimated as a simple diagram ,and carrier concentrations, while
function of potential and p±, and subtracted off. Figure 13 shows some computed I/V curves.
It will in fact be nearly proportional to the The Shape of I/V curves of devices with
simple Fermi Thomas charge. physically "reasonable" parameters tended to

all look similar in shape to Figure 13a, a single
A few comments are in order. The first is that sharp peak at a very low voltage of roughly
the method of using simple rational (operator) 0.05 V. Figure 13b shows a device with a
approximations for "quantum" effects is Fermi energy that is unrealistically high, on
relatively novel in this context, and we are the electron side. The multiple peaks in this
attempting here to show its promise, not its IN curve are not completely understood.
ultimate potential. The general concept has
considerable flexibility, and possible Real devices tended to have a maximum at a
extensions are: much higher voltage, and this was generally

attributed to a parasitic resistance in series
In the language of operators, the Fermi with the diode. I would point out that this
Thomas approximation uses the trace of H8(x) maximal voltage tended to vary greatly from
as the sole basis for estimating charge, while one physical device to the next, among the
our proposed approximation uses the trace of Varian devices. For comparison, Figure 14
operators of the form (H - XI)- 18(x) as a basis. shows some measured I/V curves.
Clearly, the more information used the better, Simulations Relevant to the Varian
and one would expect that an optimized RTD Devices
approximation would use both.

The Varian research center in Paulo AltoThe methods outlined here should be California fabricated a large set of R1TD's, and
applicable to the problem of estimating although the project was discontinued, most of
transport. The idea that "hydrodynamic ike the devices fabricated so far are now in the
equations can describe quantum trandport is possession of the University of Toronto EE
said to have been espoused by Madelung and Department. I go there occasionally, and this
Schroedinger in the 1920's. To my summer rechecked the I/V characteristics of a
knowledge, this view has atacted relatively large set of devices, which were at the
little attention. I must give some cedit, University during that visit. Those devices are
however, to Dr. H Grubin, at Scientific the ones used in this research. They were
Research Associates, who has advocated the made up of 8 double-well RITD's, 2 R1TD's

with wells only and no barriers, and one
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device with low band-gap contacts and a
barrier. The double-well devices are all I.ot+o9.

symmetrical-the left and right wells are of 0 Pamn ,rs 11
equal width. Varian has fabricated several I.o-oe, , [a I

other sets of devices, some of which have
been described in publications, most notably a ____ ___

set of RITD's with barriers only varying in .
height. All the devices had contacts doped to E _ :_ _

30 1024 m-3 , and used a well material of .oEo6. - -- --
InGaAs, with barriers of InAlAs. Except for
the barrier-only device, the contacts were also I.oos . ...
InAlAs. In all devices, the doping was in the
contacts only, not (intentionally) extended into 1.o 04.

the wells or barriers. The well and barrier 1.OE+OI .OE03 IOE+05 I.OE.07

materials used were lattice-matched to the Expefiment
underlying InP substrate, so that these were Figure 15
unstrained devices. Table I summarizes the
Devices. The comparison of theory and experiment. This shows

maximal currents for all the Varian Devices and their
Figure 15 condenses our results. Test cases simulated values. The graphs shows two parameter
with artificially-high density of states had sets, parameters I set the densities of states masses to
more "scatter" than those with the theoretical 0.1 an d 0.083 for the conduction bands in InALAs, and
density of states, even though the theoretical GalnAs, respectively. Parameter set II sets the masses
density resulted in an overall overestimation to 0.122 and 0.1. Parameter set I is modeled after the
of the current density. The systematic physically "best" value, and can be fitted closely to the
agreement is very good, if devices 1, and 9 are experimental data, while parameter set II is closer to the
excluded. Device 9 is clearly an anomaly, as it absolute value of the data. The slope of the line is
is physically an related to devices 2, 1, and 5 approximately 0.78
which show a greatly increasing current with
decreasing barrier width. Device 1, which is
not so far off, in any event, is an "anomaly" in Device and Materials Parameters
the other direction. Devices with parameters
of 1 had the best performance of all the Varian Table II summarizes the materials parameters
RITD's, they had high current densities and used as our "standard" set
very high peak to valley ratio's.

Table I lists the Varian devices, including all
devices that were readily available for a
recheck of the I/V characteristic when I was in
Toronto in the summer of 1991. Some devices
did not show negative resistance at all and
were not included.
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Table I

This is a table of the Varian devices used in this study. The material and doping parameters are
described in the text, and in Table 1I.

Varian Resonant Interband Tunnel Devices
Double Well Devices ----- both wells equal ]

Device Well nm Barrier nm Maximal Current A/m 2

1 4 4 1.27 106

2 4 6 2104

3 6 4 1.75104

4 6 2 3105

5 4 2 2106

6 3 4 1.2105

7 2 4 1 105

8 6 6 1.4103

Devices with Well only

9 8 139

10 4 1:.: 6105

Devices with InGaAs Contacts, and a Barrier only

11---- 14 1.3106

36



Table II
This describes the materials parameters used for simulations. In some cases specific parameters
were varied, as described in the text. All devices were considered to be composed of two
materials, a barrier material (AlInAs), which was generally used as the contact too and a well
material (GaInAs).

Parameter Barrier/Contact Well Description

Ec 1.4 eV 1.0eV Conduction Band Level

Ev 0 eV 0.25eV Valence Band Level

My 0.52 me 0.52 me Valence band Mass --- This is a density of
states mass used by the Poisson solver to
compute charge density

Mc 0.1 me 0.083 me Conduction band Mass --- This is a density
of states mass used by the Poisson solver
to compute charge density

x 6.5 eV 6.5 eV
Band Parameter: X MLT,-, P is the

interband matrix element

mc .086 me .048 me Conduction Band Mass used for solution
of Schroedinger's Equation

My .091 me .052 me Valence Band Mass used for solution of
Schroedinger's Equation

mpv 0.3 me 0.3 me "Parallel" valence band masses, used to
adjust the well energies as parallel
momentum is increased

mpc 0.86 me 0.48 me "Parallel" Conduction band masses, used
to adjust the well energies as parallel
momentum is increased---These are the
same as the normal masses.
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Heavy Holes No Stress (a) Light Holes No Stress (b)

Hole Band with Stress (c) Hole Band with Stress (d)

This illustrates the effect of stress upon the valence bands of a semiconductor. The band parameters
ire those of GaAs, but are believed to be typical of a high-performance semiconductor. The graphic
shows a constant energy surface in momentum space. In the absence of stress, the heavy holes have
,onstant energy surfaces which resemble rounded-off cubes. The shape reflects the cubic symmetry of
the lattice, while manifesting large anisotropy. In 13b, the light holes are shown on the same scale,
and one can observe that the volume is dramatically smaller. On this scale, it is hard to see the light
ole surface, but when expanded, it does not depart visibly from a sphere.

Parts c and d show the two bands near G after the application of a large stress. Although the shape is
lifferent, the two ellipsoids have approximately the same volume. The lines in c and d are 1/2 the
length of the corresponding lines in Figure 13a and b, with the stress in the z direction-the direction
f the "longitude" lines. For compressive stress (squeezed in the z direction, pulled in the x and y

lirections) 13c will be at the top of the band.

Figure 16
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C~ontrol Electrode

Insulator

n-contact

Quantum Well (Tunnel) Region

This shows the "basic" 3-terminal device structure. A complimentary device exists, with the n
and p regions interchanged. The action of the control electrode is both to influence the shape of
the n quantum well and to change the n carrier concentration. A real device might be long in the
z direction (into the paper) while taking the form of a narrow strip, as shown, to reduce parasitic
resistance. The barrier below the control should be 25-30 nm to reduce parasitic conductance,
and while the carrier concentrations in the n well should fill the first sub-band, be on the order of
2 1016 m-2. The control voltage would be on the order of 1 volt, so that the insulating layer
might have to be a "real" insulator, not a high band-gap semiconductor, in order to limit leakage

currents.

Figure 17Qunu W l Tunl7Rgo



Effect of Stress double well RITD doubled. If a 3 rm region

next to the well had a reduced density of
Stress is of interest for many reasons, ranging states, the current increased by a mere 25%. If
from the desire to combine materials of both the well and a 3 nm region were stressed,
differing lattice constants, in which case the then the increase was roughly 250%.
stress may be incidental, to the hope that Altogether, the main effect would seem to be
stressed devices will perform better. Reference due to a reduction in the charge stored in the
18 is an example of a relatively novel tunnel well under stress, which can double the critical

device which combines materials of differing current.
lattice constants and obtains very high Other Parameters
performance. While it is not "interband" in the
sense uses in this study, it does involve Sensitivity of the barrier heights and widths
tunneling from the F valley to the X valley. It was very strong, as is to be expected on the
also demonstrates a device technology basis of the WKB approximation. In
compatible with the "mature" GaAs material addition,the maximal current was most
system. sensitive to parameters which changed the

Fermi energies relative to the band edge,
As discussed earlier, stress has a large effect When graded doping was put into the well
upon the valence band structure. This is without decreasing the doping outside the
illustrated in Figure 16, which shows a set of 3 well, then the current increased over 20. On
dimensional constant energy surfaces in the other hand, if the doping was graded, but
momentum space. In the absence of stress, the with no net increase ( ie taken from the
heavy holes have a complex energy surface, contact and put into the barrier ) then there
which is more nearly cubic than spheroidal, was no significant change in maximal current.
while the light hole energy surfaces are very
nearly perfect spheres. After the application of The results were not sensitive to a change in
stress, te bands become intricately mixed, band offset, or to the band parameter X.
and the result is two new bands separated at Concuion
the F point, and with spheroidal energy
surfaces. In the case of GaAs, the two Computer simulation using a 2-band model
spheroids have almost identical volumes, and predicts the trends well for Interband tunnel
the resulting effective (density of states ) mass devices, but the absolute values are off by a
is 0. 17. systematic amount. It is not known why the

The dominant effect of stress upon an RD simulated results show a dramatically larger
is expected to be the, dramatically decrease current than is observed, but it is thought to be
the density of states and this is the only effect related to the effects of high doping in our test
which can be readily incorporated into the two "population".
band model. We decreased the density of Compressive stress in the quantum well on the
states mass to 0. 18me for the valence bands of p side, and doping in the barrier, are both
stressed devices. This value was obtained by predicted to increase the maximal current.
calculating the density of states of the
Luttinger model, as discussed earlier. Several Although the simulator did not add in the
Simulation ruas were made assuming that a thermionic current, analytic estimates of this
piece of the quantum-well structure wasstressed by compression in the z direction. If current were discussed in an earlier section,

and they do not account for the observed
the doping were left at the "standard" 30 1024, valley currents, which are higher.
and the density of states for the quantum wells
was changed to 0.18-the number indicated
by the band density of states before the
structure becomes too nonparabolic-then the
maximal current of a 4 nm well 4 nm barrier
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Three-Terminal Devices 8-Band Model

It is widely agreed that the 8-band Kane model
There appears not to be a satisfactory means to should be an accurate representation of the
contact the interior of an RITD, so the primary band structure near the F point. The 2-band
3-terminal device structure available involves model used in our present simulator is only an
the addition of an electrode outside the device, approximation to this. Nonetheless, it is
as shown in Figure 17. At this time, we have expected to capture most of the physics of the
only begun to explore the potential of such interband mixing. McLellan et. al. carried out
devices, but it would appear that it is possible simulation (of a different type of device) and
to modulate the tunnel current by means of a compared the 8-band results to 2-band results.
control voltage applied to the control They confirmed that the 2-band results are
electrode. This device structure is very similar usually within a factor or two of the 8-band
to the Stark Effect transistor, and the control results, and very rarely more than a factor of
voltage would affect the quantum well, but in 10 off. They did not report a systematic
an RITD, more transconductance is likely to deviation between the two models, as we have
arise as a result of modulating the carder found between our model &A the devices
concentrations in the well. fabricated at Varian. There is oni question

as to what 2-band parameters are relevant to a
An estimate of performance can be made as given set of 8-band parameters.
follows assuming a "high"performance current
density:

Current with one volt applied 107 A m 2; Band Parameters

Capacitance 3 10-3 F mn-2  There is some uncertainty in the band
eis just (e/d). parameters used in our simulations. This

The capacitance iuncertainty has two sources. First, some of the

In short, one can modulate the RITD, but the band parameters, especially X, are not well

transconductance does not yield a device known. It appears, however, that the tunnel

which can compete head on with FETs for rate is relatively insensitive to X. Second, the

applications in logic and signal amplification. 2-band model parameters to be used are not

On the other hand, if one is using the RITD as always related to the 8-band parameters.

a comparison with a variable threshold, or as Finding the optimal correspondence between

an oscillator, then such a control electrode 8-band and 2-band parameters could be the

would be very valuable, subject of future work.

Of course, many device physics experiments
could be carried out upon such structures as Heavy Doping
part of a basic research program.

The Varian devices used extremely high
doping, and high doping is often a prerequisite
for a high current density (i.e., fast ) device.

Physics Issues In out opinion, the systematic deviation of the
measured devices relative to the predictions of

When we first began to obtain simulation our simulations is most likely due to the fact
results that we felt were reliable (in the sense that tunnelling into and out of highly doped
that the numbers represented the model, not regions involves physical effects which we did
necessarily reality), it was immediately not model correctly. The relevant physics
observed that the tunnel currents were itself is not well understood, and what is
predicted to be much (10-100 times) larger needed is more basic research on highly doped
than observed. We naturally questioned what materials.
the discrepancy was due to.
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In the end, one obtains the well known

Charge Density expression:

Our simulator used a simple Fermi Thomas j = gqm (K T) 2e(V-VT)Y/ 4
T

charge density, assuming parabolic energy (2r)2 h3

bands. Analytic estimates showed that this is
considerably far off, at the doping densities where T is now temperature not transmission,
used, and an attempt was made to "fix" the and VT is the threshold, and where the left and
problem by utilizing a higher density-of-states right conduction bands are lined up.
effective mass. This is not wholly satisfactory,
for the actual carrier densities vary from near This formula predicts that J will be below 104
0 to 30 1024m -3 in the Varian devices, and our Am -2 0.4 Volt below the gap, or - 1 Volt for
effective mass, which was chosen to result in InAlAs. Most of the devices show a large rise
the correct density at 30 1024m "3 will well before this, and the cause may be
overestimate the density as p.-Ec becomes "indirect" conduction between the wells, as
lower. While it should not be difficult to discussed earlier.
incorporate a more general charge density
calculation into a simulation program, there is
the possibility that at the highest densities
carrier interactions will provide additional Scattering
effects, which will affect device performance. Figure 1, especially Figure 1c, emphasizes that

We estimated the difference between the scattering can be a dominant means of

Hartree quantum charge density and the Fermi conduction, especially when the bias voltage

Thomas charge density, and found it to be is in the "gap" just below the region of direct

small in the Varian devices. The departure thermionic current. In other cases, too,

from parabolic bands is a much larger effect. scattering can affect the /V characteristic and
other manifestations of device performance.
The present work did not take scattering into
account in any quantitative manner, and this

Thermionic Emission should be changed in future work.

The thermionic emission is given by the same
formula used to calculate interband tunnelling:

Applications Issues
_ q d2k)2
2r dEITI2(fL fR) This short section will necessarily have the

flavor of personal opinion rather than hard
scientific fact, but with this warning you may

The thermionic emission is simpler, for read on. Most of the comments are fairly
several reasons: generic to hysteretic tunnel devices, Josephson

The Fermi factors can be replaced by Junctions, Tunnel Diodes, Resonant Tunnel
Boltzman statistics, Diodes, and Interband Tunnel Diodes. Tunnel

1T12 is almost exactly 1 in the devices have many potential applications in
classically allowed region. This is not just an the generation of very high frequencies, and in

assumption, our simulator has been used to the generation of sharp step waveforms. The
upper frequency limit is essentially given by

calculate 171 and it rises from 0 to 0.8 over a the band gap, and tunnel devices can, in
range of 6meV as the energy rises principal, provide power in the far infrared,
above the conduction band on the right. where existing technology is very limited.

Tunnel diodes are used to generate fast-rising
pulses for instruments, especially sampling
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oscilloscopes, and time-domain improvement over this (or MODFETs etc.)
reflectometers, and such applications are are not good, and one is well advised to
likely to continue. The fast responses of
which a tunnel diode is capable are well suited
to the comparison needed for some A to D
applications, and as a pulse discriminator in Recommendations for Future
digital communications. The ability to control Research
the threshold with a "3rd" terminal would be
valuable in these applications. At the risk of This project has led to several
sounding negative, however, I would
discourage expectations that these devices are recommendations. In this project we havelikely to displace transistors for general- begun the development of software tools for

device physics, which can have an impact
purpose logic, or signal amplification, upon the field.

Past research upon two terminal devices has Software Tools
tended to focus too heavily upon the possible
applications as logic gates. The IBM During this work, the ability to interactively
Josephson computer project, which ended in explore device physics was very rewarding.
the early 1980's, is an example of this. It has Our simulator will generate a band diagram in
gradually been learned that tunnel devices are a few seconds, and future simulations should
not well-suited to general-purpose logic. The attempt to provide such rapid feedback, even
reasons for this cannot be elucidated in this at the expense of sophisticated models.
report, but the core problem is that circuits
have poor margins. The ability to trade off Our user interface worked far better than other
gain for margins is not available for low-gain simulator interfaces used by this author, and
devices, and the matter is made worse when although means should be found to make the
the current density depends exponentially programming easier, it too is clearly the
upon device-fabrication parameters. direction in which to proceed.

Similarly, the elimination of harmonic In the end, device simulation tools, should be
distortion by means of negative feedback is designed for use by "non-experts", so that, for
only available for high-gain devices, so that example, the researcher in a fabrication group
negative resistance amplifiers have often been can have access to state of the art simulations
plagued by harmonic distortion and limited based upon the devices under fabrication.
dynamic range. Characterization Tools

High gain without instability is inherently
difficult to achieve in a two-terminal device The primary tool for the characterization ofwithout any isolation between input and two terminal devices is the I/V curve
wout, aextractor. A core problem is the desire to
output. obtain full IN curves of devices with a

"Three-Terminal Device" has come to be a negative resistance region. Most researchers

Holy Grail in the Superconducting micro- use a "parameter analyzer," usually the

electronics industry, and reflects a desire to Hewlett Packard product, which is optimized

find the way to attain the high speed and low for very low leakage current, but is rarely
power dissipation of tunnel devices, with the stable when taking the I/V of an interband

isolation and gain which is more typical of tunnel device. An ideal negative-resistance

today's highly developed t. At ts device will be stable when connected to a low

time, Heterostructure Bipolar Transistors impedance, as illustrated in Figure 18.
routinely exhibit current gains of 5,000, and Devices with low current densities (and thus
can provide useful gains in the mm wave slow switching speeds) can be "stabilized" by

region of the spectrum. The prospects for adding external circuitry, but this becomes
finding tunnel devices which are a quantum more difficult for high-current-density

devices, as parasitic inductance in the
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interconnection can cause a device to oscillate where improved test equipment is badly
internally even when it is "connected" to a low needed.
impedance, because the physical device sees
the packaging inductance. At this time,
relatively few laboratories are performing Three-Terminal Devices
high-speed testing upon tunnel devices.

Research upon three-terminal devices should
consist of two parts. As interband tunnel

measurement devices are presently pushing the frontiers ofGeneral-purpose "I/V curve" maue nt device physics, it is useful to view some

electronics are usually "home-built" because devices as valuable research tools, without

the main manufacturers have not made

parameter analyzers suitable for use with regard for ultimate application. This is not to

conditionally stable devices. It is especially say that applications will never be found for
desirable to have a means to extract the Stark effect transistors, for example. The
detrsil to hve fa me h cnear-term applications are most likely to
intrinsic I/V curve from a device which cannot involve using a control electrode to modify the
be stabilized at all. In principle, this could be behavior of a device that is used essentially as
done by analyzing the harmonics generated a two- terminal device. At this time, three-

amplitude (microwave) sine wave, so that the terminal devices with sufficient gain to be

device switches exactly once each cycle. To useful for general-purpose logic or signal

extract an I/V curve from such, or similar, data amplification appear unlikely.

requires software that is not generally One dimensional Quantum Well Wires
available. (QWW) offer the possibility of three terminal

tunnel devices. This project did not permit

Stable Load Ue detailed simulations of QWW devices, but our
understanding of the basic physics is not fully
adequate, in any case. QWW tunnel devices
are however a broad and promising area for
future research.

Electro-Optic Devices

Unstable Load Uns Resonant Interband "Tunnel" devices can be
expected to respond to light, or to generate
light. In fact, the boundary between "optical"

V and "electrical" can become blurred within
such a device. The generation of sub-mm
waves is an area where interband tunnel

Fiaure 18 devices are promising, and competing
This illustrates a "generic" tunnel device IN curve, technologies do not work well. The
and shows both a stable load line, and an unstable one. fundamental frequency limits are set by the

bandgaps ( 0.75 eV corresponds to
l81lIrHz. In practice, parasitic losses will
limit performance. The practical limits are not

Of course, these devices are often intended for known, but efforts should be made to design
use in very high speed circuitry, and so it is device structures for low RF losses.
desirable to be able to perform high speed
testing. This opens up special problems as It would take us too far afield, to discuss the
present high speed testing centers upon the use theory of photon assisted tunneling in detail
of microwave network analyzers for here. The theory of photon assisted tunnelling
characterization of linear devices. The in resonant tunnel devices has been discussed
characterization of nonlinear devices is an area by this author1 9 A detailed theory of quantum
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effects in tunnel devices was published by
Tucker20 , and is bases, as was our own paper, [101W. Shockley, Phys. Rev. 78, 173 (1950)
upon the transfer matrix approach of
Bardeen21 and others22 . [1 1I"Cyclotron Resonance of Electrons and

Holes in Silicon and Germanium Crystals",
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